Copied to
clipboard

G = C24.69D4order 128 = 27

24th non-split extension by C24 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C24.69D4, C42⋊C218C4, C22.4Q167C2, (C22×C4).678D4, C23.749(C2×D4), C22.45(C4○D8), (C22×C8).18C22, C4.20(C42⋊C2), C22.64(C8⋊C22), C23.76(C22⋊C4), (C23×C4).245C22, C23.7Q8.11C2, (C22×C4).1336C23, C2.1(C23.20D4), C2.1(C23.19D4), C22.53(C8.C22), C2.23(C23.36D4), C2.23(C23.24D4), C2.13(C23.34D4), C4.105(C22.D4), C22.80(C22.D4), C4⋊C4.196(C2×C4), (C2×C4).1326(C2×D4), (C2×C22⋊C8).19C2, (C2×C4⋊C4).43C22, (C2×C4).742(C4○D4), (C22×C4).268(C2×C4), (C2×C4).369(C22×C4), (C2×C4).335(C22⋊C4), (C2×C42⋊C2).17C2, C22.259(C2×C22⋊C4), SmallGroup(128,557)

Series: Derived Chief Lower central Upper central Jennings

C1C2×C4 — C24.69D4
C1C2C22C2×C4C22×C4C2×C4⋊C4C2×C42⋊C2 — C24.69D4
C1C2C2×C4 — C24.69D4
C1C23C23×C4 — C24.69D4
C1C2C2C22×C4 — C24.69D4

Generators and relations for C24.69D4
 G = < a,b,c,d,e,f | a2=b2=c2=d2=1, e4=d, f2=c, eae-1=ab=ba, ac=ca, ad=da, faf-1=abd, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=bcde3 >

Subgroups: 300 in 150 conjugacy classes, 60 normal (22 characteristic)
C1, C2, C2, C2, C4, C4, C4, C22, C22, C22, C8, C2×C4, C2×C4, C2×C4, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C4⋊C4, C2×C8, C22×C4, C22×C4, C22×C4, C24, C2.C42, C22⋊C8, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C2×C4⋊C4, C42⋊C2, C42⋊C2, C22×C8, C23×C4, C22.4Q16, C23.7Q8, C2×C22⋊C8, C2×C42⋊C2, C24.69D4
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, C22⋊C4, C22×C4, C2×D4, C4○D4, C2×C22⋊C4, C42⋊C2, C22.D4, C4○D8, C8⋊C22, C8.C22, C23.34D4, C23.24D4, C23.36D4, C23.19D4, C23.20D4, C24.69D4

Smallest permutation representation of C24.69D4
On 64 points
Generators in S64
(2 57)(4 59)(6 61)(8 63)(10 27)(12 29)(14 31)(16 25)(17 21)(18 33)(19 23)(20 35)(22 37)(24 39)(34 38)(36 40)(41 45)(42 55)(43 47)(44 49)(46 51)(48 53)(50 54)(52 56)
(1 64)(2 57)(3 58)(4 59)(5 60)(6 61)(7 62)(8 63)(9 26)(10 27)(11 28)(12 29)(13 30)(14 31)(15 32)(16 25)(17 36)(18 37)(19 38)(20 39)(21 40)(22 33)(23 34)(24 35)(41 50)(42 51)(43 52)(44 53)(45 54)(46 55)(47 56)(48 49)
(1 28)(2 29)(3 30)(4 31)(5 32)(6 25)(7 26)(8 27)(9 62)(10 63)(11 64)(12 57)(13 58)(14 59)(15 60)(16 61)(17 52)(18 53)(19 54)(20 55)(21 56)(22 49)(23 50)(24 51)(33 48)(34 41)(35 42)(36 43)(37 44)(38 45)(39 46)(40 47)
(1 5)(2 6)(3 7)(4 8)(9 13)(10 14)(11 15)(12 16)(17 21)(18 22)(19 23)(20 24)(25 29)(26 30)(27 31)(28 32)(33 37)(34 38)(35 39)(36 40)(41 45)(42 46)(43 47)(44 48)(49 53)(50 54)(51 55)(52 56)(57 61)(58 62)(59 63)(60 64)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56)(57 58 59 60 61 62 63 64)
(1 20 28 55)(2 45 29 38)(3 18 30 53)(4 43 31 36)(5 24 32 51)(6 41 25 34)(7 22 26 49)(8 47 27 40)(9 48 62 33)(10 21 63 56)(11 46 64 39)(12 19 57 54)(13 44 58 37)(14 17 59 52)(15 42 60 35)(16 23 61 50)

G:=sub<Sym(64)| (2,57)(4,59)(6,61)(8,63)(10,27)(12,29)(14,31)(16,25)(17,21)(18,33)(19,23)(20,35)(22,37)(24,39)(34,38)(36,40)(41,45)(42,55)(43,47)(44,49)(46,51)(48,53)(50,54)(52,56), (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,36)(18,37)(19,38)(20,39)(21,40)(22,33)(23,34)(24,35)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,49), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,62)(10,63)(11,64)(12,57)(13,58)(14,59)(15,60)(16,61)(17,52)(18,53)(19,54)(20,55)(21,56)(22,49)(23,50)(24,51)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,20,28,55)(2,45,29,38)(3,18,30,53)(4,43,31,36)(5,24,32,51)(6,41,25,34)(7,22,26,49)(8,47,27,40)(9,48,62,33)(10,21,63,56)(11,46,64,39)(12,19,57,54)(13,44,58,37)(14,17,59,52)(15,42,60,35)(16,23,61,50)>;

G:=Group( (2,57)(4,59)(6,61)(8,63)(10,27)(12,29)(14,31)(16,25)(17,21)(18,33)(19,23)(20,35)(22,37)(24,39)(34,38)(36,40)(41,45)(42,55)(43,47)(44,49)(46,51)(48,53)(50,54)(52,56), (1,64)(2,57)(3,58)(4,59)(5,60)(6,61)(7,62)(8,63)(9,26)(10,27)(11,28)(12,29)(13,30)(14,31)(15,32)(16,25)(17,36)(18,37)(19,38)(20,39)(21,40)(22,33)(23,34)(24,35)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,49), (1,28)(2,29)(3,30)(4,31)(5,32)(6,25)(7,26)(8,27)(9,62)(10,63)(11,64)(12,57)(13,58)(14,59)(15,60)(16,61)(17,52)(18,53)(19,54)(20,55)(21,56)(22,49)(23,50)(24,51)(33,48)(34,41)(35,42)(36,43)(37,44)(38,45)(39,46)(40,47), (1,5)(2,6)(3,7)(4,8)(9,13)(10,14)(11,15)(12,16)(17,21)(18,22)(19,23)(20,24)(25,29)(26,30)(27,31)(28,32)(33,37)(34,38)(35,39)(36,40)(41,45)(42,46)(43,47)(44,48)(49,53)(50,54)(51,55)(52,56)(57,61)(58,62)(59,63)(60,64), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56)(57,58,59,60,61,62,63,64), (1,20,28,55)(2,45,29,38)(3,18,30,53)(4,43,31,36)(5,24,32,51)(6,41,25,34)(7,22,26,49)(8,47,27,40)(9,48,62,33)(10,21,63,56)(11,46,64,39)(12,19,57,54)(13,44,58,37)(14,17,59,52)(15,42,60,35)(16,23,61,50) );

G=PermutationGroup([[(2,57),(4,59),(6,61),(8,63),(10,27),(12,29),(14,31),(16,25),(17,21),(18,33),(19,23),(20,35),(22,37),(24,39),(34,38),(36,40),(41,45),(42,55),(43,47),(44,49),(46,51),(48,53),(50,54),(52,56)], [(1,64),(2,57),(3,58),(4,59),(5,60),(6,61),(7,62),(8,63),(9,26),(10,27),(11,28),(12,29),(13,30),(14,31),(15,32),(16,25),(17,36),(18,37),(19,38),(20,39),(21,40),(22,33),(23,34),(24,35),(41,50),(42,51),(43,52),(44,53),(45,54),(46,55),(47,56),(48,49)], [(1,28),(2,29),(3,30),(4,31),(5,32),(6,25),(7,26),(8,27),(9,62),(10,63),(11,64),(12,57),(13,58),(14,59),(15,60),(16,61),(17,52),(18,53),(19,54),(20,55),(21,56),(22,49),(23,50),(24,51),(33,48),(34,41),(35,42),(36,43),(37,44),(38,45),(39,46),(40,47)], [(1,5),(2,6),(3,7),(4,8),(9,13),(10,14),(11,15),(12,16),(17,21),(18,22),(19,23),(20,24),(25,29),(26,30),(27,31),(28,32),(33,37),(34,38),(35,39),(36,40),(41,45),(42,46),(43,47),(44,48),(49,53),(50,54),(51,55),(52,56),(57,61),(58,62),(59,63),(60,64)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56),(57,58,59,60,61,62,63,64)], [(1,20,28,55),(2,45,29,38),(3,18,30,53),(4,43,31,36),(5,24,32,51),(6,41,25,34),(7,22,26,49),(8,47,27,40),(9,48,62,33),(10,21,63,56),(11,46,64,39),(12,19,57,54),(13,44,58,37),(14,17,59,52),(15,42,60,35),(16,23,61,50)]])

38 conjugacy classes

class 1 2A···2G2H2I4A···4H4I···4P4Q4R4S4T8A···8H
order12···2224···44···444448···8
size11···1442···24···488884···4

38 irreducible representations

dim111111222244
type++++++++-
imageC1C2C2C2C2C4D4D4C4○D4C4○D8C8⋊C22C8.C22
kernelC24.69D4C22.4Q16C23.7Q8C2×C22⋊C8C2×C42⋊C2C42⋊C2C22×C4C24C2×C4C22C22C22
# reps141118318811

Matrix representation of C24.69D4 in GL6(𝔽17)

100000
010000
001000
0071600
000010
0000016
,
100000
010000
0016000
0001600
000010
000001
,
1600000
0160000
0016000
0001600
0000160
0000016
,
100000
010000
001000
000100
0000160
0000016
,
1020000
1070000
0011900
0011600
000090
0000015
,
750000
7100000
0071500
0081000
0000015
000090

G:=sub<GL(6,GF(17))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,7,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,16,0,0,0,0,0,0,16],[10,10,0,0,0,0,2,7,0,0,0,0,0,0,11,11,0,0,0,0,9,6,0,0,0,0,0,0,9,0,0,0,0,0,0,15],[7,7,0,0,0,0,5,10,0,0,0,0,0,0,7,8,0,0,0,0,15,10,0,0,0,0,0,0,0,9,0,0,0,0,15,0] >;

C24.69D4 in GAP, Magma, Sage, TeX

C_2^4._{69}D_4
% in TeX

G:=Group("C2^4.69D4");
// GroupNames label

G:=SmallGroup(128,557);
// by ID

G=gap.SmallGroup(128,557);
# by ID

G:=PCGroup([7,-2,2,2,-2,2,2,-2,224,141,456,422,58,2804,718,172]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=1,e^4=d,f^2=c,e*a*e^-1=a*b=b*a,a*c=c*a,a*d=d*a,f*a*f^-1=a*b*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=b*c*d*e^3>;
// generators/relations

׿
×
𝔽